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Abstract-An analytical method is developed for the accurate calculation of the temperature changes in 
countercurrent flow spiral heat exchangers. The spiral is composed of circular arc profiles with the centres 
of curvature on the angles of an equilateral triangle. Constant overall heat transfer coefficients and heat 
capacities are assumed. In contrast to the conventional procedure, the heat flux density distribution is 
considered, which offers considerable advantages over a direct analysis of the fluid temperatures. The 
influence of various geometrical parameters is investigated and charts are presented for the design and 

rating of spiral heat exchangers. 

1. INTRODUCTION 

1.1. Preface 
AMONGST the various forms of heat exchangers which 
are employed in industry for heating or cooling fluids, 
countercurrent Spiral plate Heat Exchanger (acronym 
SHE) has found a solid position because of its numer- 
ous advantages. High thermal performance, easy 
maintenance and compactness often prevail over 
other exchangers. The SHE within such fluids as, for 
example, untreated water, sludges or slurries, can be 
met in practice, whereas the other exchangers fail 
because of hard fouling. 

However, despite wide applications, at the present 
stage of heat transfer theory little is known about 
ways of finding an exact value of the effectiveness P 
for SHE, even in its classical use of constant heat 
transfer coefficients. 

In this paper particular stress is laid on the deter- 
mination of the thermal effectiveness P for SHE with 
complete accordance in regard to both the physical 
model of the thermal process as well as to the geometry 
of an apparatus. This was done in order to take a step 
towards developing the thermal theory of SHE and 
especially to study the thermodynamical limitations 
which a designer meets. A general view of SHE with 
cross-sections which allow the flow arrangement of 
fluids to be observed is shown in Fig. 1. 

As a by-product this paper could be helpful as a 
reference in developing approximate methods for cal- 
culation of the effectivenesses of SHE. 

1.2. Assumptions regarding geometrical and physical 
models of SHE 

The thermal theory of SHE, version Q, is the formal 
analytical way of dealing with the heat-~ux-density 
vector under conventional assumptions well known 
in the literature of heat exchangers [l, 21 and taken 
into account in the analysis of this problem. 

In the light of some thermal attributes of SHE such 

as: 

interesting behaviour in distributions of the heat 
flux density : possible reversed heat transfer, oscil- 
lations ; 
conditions under which for very high NTU a local 
maximum for the heat flux density may occur ; 

and in the light of a simple method of solution, from 
a mathematical point of view, i.e. the standard tech- 
nique of Laplace’s integral, the Q version offers advan- 
tages in comparison to methods which deal directly 
with temperatures of fluids. Furthermore, it is possible 
to express the formula for a calculation of the effec- 
tiveness of SHE explicitly. 

0 Ti 1 

FIG. 1. Cross-sections of counterflow spiral plate heat 
exchanger. 
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NOMENCLATURE 

total surface area [m’] 
channel spacing which was optionally 

chosen as a unit of length [m] 

heat capacity rate [W K ‘1 
log mean temperature difference 
correction factor 
height of exchanger [m] 
overall heat transfer coefficient 

[Wm ’ K ‘1 
matrices (see equations (7) and (8)) 
number of channels in SHE equal to 
double number of turns 

number of transfer units, A,,k/C 

effectiveness of SHE 
, reduced heat flux density defined 
differently for even and odd numbers I in 

equation (5) 
heat capacity rate ratio for counter flow, 

C,,!C, 
radius measured in b units 
Laplace’s parameter 
acronym, countercurrent Spiral plate 
Heat Exchanger 
dimensionless temperature, t ,, real tem- 

perature of fluid 4 (tr - trr,,)l(tr.~ - trr,J Kl 

TCHE acronym, True Countercurrent Heat 

Exchanger. 

Greek symbols 

local temperature diffcrencc along main 
spiral. r,- 3,+ , 
local temperature difference along side 
spiral. r,, ?-3,+, 
dimensionless temperature, f,, , real 
temperature of fluid II. 

(211 - f,,,o)l(tr,, -trr,,) Kl 
total angle measured from beginning of 
the spiral, 2x1+ cp [rad] 
angle in coordinate system (r, q), Fig. 3 
[rad] 
cross-sectional number of transfer units, 
Znkh,,h/C, 
auxiliary variable, q$. 

Subscripts 
i inlet 
0 outlet 
I fluid I 
II fluid II 

j,A ;,j.B;j,C channelj in sector A, B, C. 

The above assumptions include the geometry of 
the apparatus and also the properties of fluids. The 
assumption related to the geometry of SHE follows 
the model of a spiral described in ref. [3] which is an 
involute of a polygon. However. in the calculations 
done in the present paper the equilateral polygon (tri- 
angle: see Fig. 2) was chosen as a basis for SHE, 
as distinct from the segment of a line which, as a 
degenerate form of polygon, was considered in ref. 

[31. 
It was proven on the basis of numerical data that 

the present assumption about a spiral built on the 
basis of a triangle instead of the segment of a line 
exceeds superfluously demands of accuracy even for 
the purpose of getting a proper level of reference This 
was done in order to approach the actual model of 
involute to the model of Archimedes’ spiral, which is 
almost overwhelmingly considered in the literature on 
SHE [‘l-8]. 

The main assumptions about fluids’ properties and 
flow conditions agree with the assumptions known 
from the theory of heat exchangers [l, 21, which from 
now on will be called ‘standard assumptions’. These 

are : 

heat is transferred only by convection ; 
no change of phase, steady flow of fluids and heat ; 
temperatures are equalized across a channel ; 

constant overall heat transfer coelhcicnt ; 
constant heat capacities of fluids and no heat losses 
to the environment ; 
heat conduction throughout the walls occurs only 
in the direction perpendicular to the surface. 

A very common arrangement of flows in this type 01 
exchanger is spiral flow in both channels. The fluids 
usually flow countercurrently, with the cold fluid 
entering at the periphery and flowing in towards the 
centre, and the hot fluid entering at the centre and 
flowing towards the periphery (hot and cold fluid 
could also be exchanged). The arrangement of flows 
is shown in Fig. 2. 

All quantities considered in this paper are expressed 
in dimensionless form. 

2. SURVEY OF LITERATURE 

Of many publications dealing with SHE those 
chosen consisted of either a significant contribution 
to the thermal theory of countercurrent SHE or used 
numerical methods of calculation, accomplishing 
thoroughly the assumptions of the physical model of 
the apparatus. 

Reference [9] from 1959/60 is one of the first papers 
where the properties of SHE were rendered in an 
analytical way. Instead of an analysis of fluids flow in 
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FIG. 2. Arrangement of flows in spiral heat exchanger. 

spiral channels, Woschni [9] considered an equivalent 
plate heat exchanger. The analysis was limited to only 
a few turns : 2: checking both channels with hot and 

cool fluids together. 
Later, two papers [4,6Jt appeared in the literature 

on SHE where thermal analysis including the appro- 
priate assumptions were done correctly in the manner 
formulated in the standard literature on heat ex- 
changers. Madejski [4] and Zaleski and Krajewski [6] 

initiated a new idea of solving the problem of SHE in 
thermal aspect ; however, the necessary simplifications 
proposed there were very poorly controlled from a 
mathematical point of view, which badly affects the 
accuracy of the numerical results. 

In ref. [lo] in 1969, adopting linear and/or parabolic 
interpolations, Nowak solved the problem without 
simplifications using the numerical technique of cal- 
culation. Later, in 1972, he used a different method of 
solving this problem which allows one to transfer it 

to a Cauchy-type problem. 
Another numerical attempt towards a solution of 

the problem is presented in Buonopane and Troupe 
[5]. To support their experimental data the authors 
have calculated effectivenesses of SHE using the 

t The authors did not succeed in identifying the original 
paper where this idea of a solution to the problem was taken 
from. 

RungeKuttaS method to integrate the set of differ- 
ential equations which represent the energy balances. 

The first analytical attempt towards an accurate 
determination of the effectiveness of SHE regarding 
the standard assumptions of the literature is presented 
by Cieslinski and Bes [7]. As a geometrical basic of 

SHE, the spiral of Archimedes has been chosen. To 
fulfil the last assumption, well accepted in the litera- 
ture, the method of orthogonal Hermite polynomials 
was selected. Despite accordance to the physical and 
geometrical models and to the standard assumptions 
due to its complexity, the method cannot be easily 
accepted by a designer, which reduces its applicable 
value. 

Martin et al. [ 1 I] proposed the new straightforward 
formula for the F correction factor of SHE. Because 

this formula was an approximate approach it needed 
to be verified with the exact data. This necessary set 
of data was calculated using the Runge-Kutta method 
of integration of energy balance equations. 

$ In mathematical literature this method is known to be 
fast and is one of the most effective, but it demands a know- 
ledge of the initial vector of the sought function. In the case 
of SHEs direct fuItilment of this condition is impossible 
because the initial n-dimensional vector of temperature has 
to be found iteratively. That makes the applicability of this 
method to SHE with a higher number of turns extremely 
difficult. 
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In 1984, the first author of this paper proposed a 
new construction of the spiral as the geometrical basis 
of SHE [3]. Instead of an Archimedes’ spiral which 
hitherto was commonly found in the literature the 
new spiral was traced as an involute of a regular 

polygon. As a consequence, energy balance equations 
were expressed by a set of ordinary differential cqua- 
tions with constant coefficients. The sought after tcm- 

peraturcs of fluids were found by using Laplace’s tech- 
nique of transformation. 

In ref. [X] a particular stress is laid on the influence 
of geometric structures, such as angles of an entrance 
to and exit from SHE, dimensions of channels. heat 
transfer area and number of turns, on the basis of 
heat transfer characteristics. Regarding the numerical 
evaluations of their proposals Morimoto and Hotta 
[8] have chosen the aforementioned Runge-Kutta 

method of integration. 
The ~olnputational method of thermal design of 

SHE is the subject of ref. I12]. As the basis of the 
spiral. Zhang rt cd. proposed the set of semicircles 

which is the same geometrical construction suggested 
in ref. [3], namely an involute from a segment of a line. 
However, regarding a solution of the energy balance 
equations the approximation proposed in ref. [17] is 
based on the replacement : derivatives of enthalpy by 
their difference. Those changes were done regarding 
the too long way of integration, which is arbitrarily 
chosen and equal to one half of a turn. This causes 
poor accuracy of numerical results especially for high 

values of NTL’. 

3. ANALYTICAL TREATMENT 

In order to solve the problem analytically, equa- 
tions should be derived to represent mathematically 

the energy balance for each of both fluids as well as 
for each ‘turn” of SHE. 

3.2. Essrntiul prkiples of Q wtution 

The objective of further coI]sideratiol~s is to employ 
such a notation which allows us to achieve con- 

siderable advantages by solving the problem from 
both an engineering and mathematical point of view. 

Let us assume that the heat transfer through the 
wall may be represented by dimensionless expressions : 

All subsequent reasoning in this section can be sim- 

plified if the cross-section of the SHE is divided into 
sectors. This is a consequence of the chosen method 
of construction of the spiral. Since this spiral is an 
involute from an equilateral triangle (see Fig. 2) then 

an area of the SHE has three sectors which are denoted 
with subscripts A, B and C. The notation of the energy 
balance in each of these sectors has the same structure 
and thus it is enough to write this balance for only 
one sector. Different heat transfer conditions in SHE 
suggest a conventional sLlbdivision of the single sector 
into three regions : central with the innermost ‘turn’. 
main region with proper ‘turns’ and rand region with 

one outermost ‘turn’. 

LI/ = .,/@,)(r,- 4, i 1 ] 

and i (si 

Y/i! = j(r:+,)(7;,2-:j,i,).J 

Subscript 1 is equal to odd numbers I, 3,5, , n- 5: 
~7 - 3, n - I With uniform numeration j = 1, 2. 3, 3, 
_..I fz - 3.17 - 2. n - 1 the vatues y, could be considered 

as components of the vector in which elements yJ with 

odd nuntber,j are proportional to the heat flux density 
passing throughout the main spiral and with even 

numberj to the heat flux density passing the side spiral 
wall (see Fig. 2). Further, y is called the heat flux 
density. although it deviates from the usual 
definition.7 

Consider the elementary wedge which was cut out 
from the exchanger along its axis. In Fig. 3 arrows 
and accolnpanying formulas symbolize changes in 
enthalpy of fluids and heat flux densities which occur 
on the way of arc (r dq). 

If the components of vector 4 are denoted by de% 
nition (5) then the conversion of the energy balance 
equations (l)-.(4) may be done by the following pro- 
cedure: first let one calculate derivatives of q with 
respect to (0 and next set the formulas (t)-f4) instead 
of the derivative of temperatures. 

As a result, the thermal behaviour of SHE can be 
~ _~ ._-._. .__ ._ 

For the fluid being cooled and Rowing in the inner- -t The definition (5) is convenient for the further technique 
most ‘turn’, a differential equation with unknown of mathematic:rl solution. 

temperatures 7-, and Q2 is given by : 

(1) 

As an independent variable the product of the con- 
stant parameter $ and angle 47 was chosen : m = $tp. 
The main region of the analysed section embraces 
‘turns’ where the fluids are heated or cooled through- 
out both bordered walls. Then for the ‘turn’ next to 
innermost as well as other ‘turns’ the energy balance 
is represented by differential equations 

/ --:J,)+r,(‘l;+ j -9,) (2) 

dT I* I _ 
dto 

=T,(T,+,-3,)+v,~,((T,, ,-!(I,&,) (3) 

where subscripti = 2. 3,4, _ II --- 7. 
Since the fluid in the outermost turn is only heated 

from one side the differential energy balance for it 
consists of one term of heat flux on the right hand 
side of the equation 

The system of equations (I)-(4’) has to be sup- 
plemented by boundary conditions which are dis- 

cussed in Section 3.3. 
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FIG. 3. Temperatures and components of energy balance in elementary wedge of spiral heat exchanger. 

characterized by the matrix M which relates to the wheredandcdenoted= 1-l/RforR> 1 
vector of heat flux density and its derivative (taken ord=R-lforR<l,and 
with respect to parameter w) through the following if j is odd then cj = 1/R for R 2 1 
equation : orcj= lforR< 1, 

dq 
if j is even then cj = 1 for R > 1 

IVfq. (6) 
arc,= RforR< 1. 1 

(8) 

-_= 
do 

The above procedures transform one system (l)- 
In solution system (6), an essential part is played by (4) of linear homogeneous differential equations of 
the three diagonal symmetrical matrix made up of nth order into another system of differential equations 
coefficients : (6) of n- lth order with constant coefficients, linear 

M= 

rd -cl J(rlr2> 

--cl J(rlr2) rd c2 J(rzr3) 

c2J(r2rJ rd 

- cx J(rjr4) 
: - cg J@3r4) 

. . . . . . . . . . . . . i . . . . . . . .r.4d . . . . . . . . . . . * . .c.4?!!??? . . . . 
-cn-3J(rn-3rn-2) 

(7) 
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and homogeneous as well. Additionally, in this way 
the unsymmetrical matrix of set (l)-(4) was converted 
into the symmetrical matrix (7) which has con- 
siderable advantages for the search of cigenvalues 
(roots) of this matrix. 

Any sector has one set of equations (6) with II- I 
derivatives of the heat flux densities which can be 

solved in any mathematical way. Any solution intro- 
duces n - 1 constants which have to be determined, 

The boundary conditions for vector 4 arc for- 
mulated upon a principle that assumes the continuity 
of temperatures in the exchanger and upon the data 
of given inlet and outlet temperatures. 

Let us consider the three sectors A, B and C shown 
in Fig. 2. The notation of boundary conditions on 
passages from one sector to another without inlet and 
outlet of fluids, that is from A to B and B to C, is 

simple because it follows the principle of temperature 
continuity : 

and 

(l,.k(27111/i3) qj.B(27LIc1/3) 
J(r,.d J(r,,d 

Y,,B(4Tti/3) _ Y,.c(4XG/3) 

J(r,.d J(r,.c) is) 

where subscript ,j runs through all values 1. 2. to 
II - I. Passing from the first to the last sector where 
inlet and outlet of fluids take place, i.e. A to C. one 
can write the conditions in a similar way as before 

but this statement is valid only for ,j = 2, 3, 4, . 
n-2. This means that relation (IO) gives only II- 3 
boundary conditions. Two missing conditions should 
be deduced from given temperatures at the inlet and 

outlet : 7’,,*(O) = 1 and 3,,,,-(211$) = 0 (see Fig. 2). 
Consider the situation where the starting vector 

qA(0) with n- 1 functions is known, i.e. with accuracy 

up to constants of integration, and a general solu- 
tion of equations (6) for all sectors was found. 
This allows one to integrate equation (1) since func- 
tions on the right hand side of this equation 
Y, (T, -3J = J(r,)y,(ca) arc known. 

First, remembering that T,.,(O) = I, second using 

definition (5) 

qI..~(0) = \i(rI.A)[l -:J2.+,W1; 

‘/LA(O) = ,~(~z,l)lr,.,(o)-!j,,(o)l 

and third applying equality T,,c(27r$) = T3,*(0) (Fig. 
2), one can write : 

and 

whcrc integration goes throughout all sectors: A. B 
and C. The function V/(r,)y,(~~~) under an integration 
sign means ,;(~I.+&~.A. J(rI.RIYI.H. ci(rI.c.)qi.(,. 
respectively when passing through sectors A. B and 
C. Equation (I 1) is the first missing condition.? 

The second missing relation results from a notation 

of all components q,.*, q,,~ ,,,% of the vector 4 on the 
border line between the sectors A and C. In accord- 
ance with definition (5) all temperatures which appeal 
there have to be eliminated. 

Thus 2 ( - l)lq,,A(0)j,,~(r ,,,. J is equal to 1 - :J,, ,,(()I 
where subscript j in the sum runs from .j = I to j = 

n - 1. Dimensionless temperature 3,,,,(O) = !3,, ‘,( (2ni) 
can be expressed with the help of components 

yn ,,(.(27z@), q,a &27$) and condition 9,z,, = 0. As a 
consequence a formula appears 

As a whole the relations (9) -( 12) create the set of 
boundary conditions which allows one to solve this 
problem completely in explicit form. 

3.4. FormLs,fbr heutjluxrs in SHE 

Suppose now that all eigenvalues s,, I = l,2, 3. . 
tz--I!, IT-- I. of the matrix (7) were found. Due to the 
Q notation it is easy to check that the matrix (7) is 
symmetric and therefore all s, are real and different 

1131. 
For the set of initial values of heat flux density 

qi_,,(0) (temporarily unknown), Laplace’s method of 
transformations gives a general solution satisfying the 
set (6). In each sector with subscripts m: = A. B or 
C this solution takes the form 

(13) 

where (‘,., is the single residue calculated from the 

.F It is worthwhile mentioning that the number of math- 
ematical operations can be reduced by only solving the sys- 
tem (9), (IO) and (11) having a range equal to n-2, that is 
one less than before. This is so because these equations have 
no free terms and as a consequence they can be divided by 
only one of the unknown values q,.,+(O), e.g. q,./\(O), and then 
solved with respect to quotients : q,,,(O)/q,,,,(O) for j = 2. 3. 
...l II -2, n - I. To determine the last value, (/ ,,A(0), equation 
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following formula : 

Nij (S) Ntj ($1 
cjil = res --. = li_i(s-s,)-- = 

Nij(S,) 
s=s, M(s) , M(s) dM(s)l 

ds I-, 
(14) 

The numerator NV(s) denotes the matrix Jsl+ M(s)1 in 
which elements of rows numbered as j and columns 
numbered as i were replaced in this manner so that 
they are now equal to 0, with the exception of one 
which lies at the crossing i and j, and which is equal 
to 1. 

Now, consider the set of unknown values e,,,(O) 
o’= 1, 2, 3, . . . . n - 2, IZ - 1) which has to be found. 
On the basis of boundary conditions (9), the set of 
fluxes qj,B(21ttj/3) and qj,c(4n$/3) could be expressed 
by the set of values qj,A(0). 

Finally, the unequivocal dete~ination of the 
sought after values qj,A(0) is possible from equations 
(9)-(12), which as a whole makes the system of the 
equations of n - 1 range that is equal to the number 
of unknown components qj,,A(0). 

AI1 the above mentioned equations are linear and 
algebraic and that fact allows one to express ail of the 
components for vector q,,, qB and qc explicitly. This 
statement is valid for the one particular component 
qn_ ,,,-(27c1J) as well. Thus, the sought form of the 
effectiveness P, can be presented as follows : 

The formula (13), together with equation (S), allow 
one to calculate the temperatures for both fluids at 
any coordinate on the main or side spiral. Therefore 
the task of formulating the thermal theory in the 
Q-version for SHE is complete. 

4. LOCAL TEMPERATURE DIFFERENCE IN SHE 

Consider the temperature differences between fluids 
flowing along the walls, which are traced by the main 
and side spirals. Denote this difference analogous to 
the definition in equation (5) : 

of NTU the difference A,+, decreases monotonously. 
However, it has to be noted that beginning from a 
certain value of NTU the difference A,, , becomes 
negative. This means that energy transferred from a 
hotter fluid to a cooler one in a region close to the 
innermost turn is returned in the main region of the 
exchanger to that fluid which primarily had the task 
of heating the cooler one. This contradicts the main 
function of any heat exchanger. Therefore this nega- 
tive feature should be an indication and warning to a 
designer that SHE meets its thermal limits with growth 
of NTU. However, these values of NTU are very high 
and rarely occur in practice. Further increase of NTU 
causes oscillations of Ar+i similar to that which 
appears for A,. 

5. THERMAL PERFORMANCE OF SPIRAL HEAT 

AI(W) = T,(o) - 3, +. , (0) EXCHANGER 

4, , (0) = T,+ z(w) - h+ I (a) (16) 
where subscript I takes odd numbers 1,3,5, . . . , n - 3, 
n- 1 as before. For example, let us show the run of 
temperature difference vs total angle as coordinates. 
Assume as constant : ratio R = 1, number of channels 
n = 10 and radius r,, = 5, but consider different 
values of NTU = 1, 2, 3, 4, 5, 6, 8, 10, IS, 20, 25, 
30, 35, 40 and NTU = 11.267. For the last value, 
effectiveness P, approaches its maximum. Results of 
calculations are shown in Fig. 4. 

4.1. Dzzerence of temperatures for main spiral (Fig. 

4(a)) 
It is worth mentioning that for sufficiently high 

values of NTU the temperature difference A, between 
fluids separated by the wall placed along the main 
spiral starts to oscillate with cycle 27~ and these oscil- 
lations increase with further growth of NTU. This 
result occurs due to the influence of the different inside 
and outside heat transfer conditions in the inner- and 
outermost turns of SHE. The effect of outermost turns 
is much stronger than of innermost because a wail for 
the outermost turn is longer than for the innermost. 
Therefore the larger the value NTU the greater the 
influence of the outermost turn on the temperature 
distributions in SHE. This fact cannot be neglected in 
a thermal analysis. 

Another property of the A, function is its maximum, 
which occurs between the inlet and outlet of fluids 
and for, e.g. R = 1, shifts from outside towards the 
centre of apparatus together with an increase of NTU. 
However, this maximum diminishes and then dis- 
appears with an increase of the rate ratio R over 1 or 
a decrease below 1. 

4.2. Dzxerence qf temperatures for side spiral (Fig. 

4(b)) 
At the start for small, middle or even high values 

5.1. Injhence of rn~n~rna~ radius of SHE on its 
electiveness 

As stated in refs. [3,7], the influence of minimal 
radius on the thermal effectiveness is very small. It 
is probably for this reason that in the other papers 
[5,11,12] which deal with thermal calculations of SHE 
the question of r,,,i= was passed over without comment. 
However, this problem cannot be ignored when the 
exact calculation of SHE comes under consideration, 
either as a contribution to the theory of SHE or as a 
reference level for approximate methods. Then the 
dependence P on rmin has to be estimated qualitatively 



1338 

0.6 

a, 

0.5 

0.2 

0.16785 

I 

c 

TH. BES and W. ROETZEL 

0.6 

a L+l 

0.5 

0 2n 4n 6~ 81r 107.r 0 2n 4n 6n 8~ 

I \ -+=- Q=2lrL+(P 1. \ ---(z @=2nL+(o 

FIG. 4. Local temperature difference A vs total angle in SHE. (a) A, along the main spiral. (b) A,, , along 
side spiral for ratio R = 1, n = 10 channels (five turns) and I,,,, = 5. For NTU = 11.267, difference 

A, = 0.16789 achieves a minimum. 

and quantitatively, at least in the cases of those par- 
ameters where this influence is the greatest. 

In practice one can meet the SHE with minimal 

radii r,,, from 1 to 30-40 measured in the distance 
of channels b. The biggest deviations of effectiveness 

calculated using different r”,,” are expected for ratio 
R = 1 and high values of NTU. 

Since the mentioned absolute differences are of the 
order of 1% it will be convenient to use the excess of 
default effectiveness over the value of effectiveness 

calculated for rmln = 0 : this can be denoted 

BP, = P(NTU, R, n, rmm) - P(NTU, R, n, 0). (17) 

The parameter NTU has a significant contribution to 
the value AP,. For a practical interval of NTU values, 
i.e. 5, and even up to 15 or 20, an increase in NTU 

causes a slight rise of the effectiveness at constant 
radius r,,,,“. If rmln grows further, e.g. to 60, 80 or 100, 
then the difference AP, changes its sign and rapidly 
becomes negative. 

For ratio R = 1, for number of channels n = 10. 
20, 30 and 40, and for quantities of minimal radius 

r,,, = 1, 2, 5, 10, 20 and 50. the change of AP, vs 
1 fNTlJ is shown in Fig. 5. 

The curves with higher quantities r,,, . e.g. 20 or 50, 

are shown in Fig. 5, not because of their practical 
application in cases of small numbers of turns n = 10, 

20, 30 or 40, but to demonstrate a behaviour of SHE 
and to prove that further growth of r,,,, does not affect 
the effectiveness of an exchanger, which for r,,,,,, + x_ 

achieves an asymptotic value. 
Consider again the most practical domain of 

NTU < 5 and cases with small number of turns IZ = 10 
and 20 where r,,,,, is equal to or smaller than 5 and 

10. Then from Figs. 5(a) and (b) it can be seen that 
deviations of effectiveness AP, due to r,,,,, arc smaller 
than 0.8% or 0.4%, respectively. Furthermore, on the 
basis of Figs. 5(c) and (d) one can anticipate that the 
higher number of turns, the smaller is the deviation 
A P, which does not exceed 0.2”/0. 

5.2. Diugrams with efectivenesses P, and P,, on both 
U.YL’S 

To illustrate the theory under discussion, a con- 
siderable set of numerical data was computed for a 
countercurrent flow exchanger. However, nothing 
stands in the way of extending the calculations to 
cocurrent flow. This was omitted here because of the 
small practical use of this kind of exchanger. 

Amongst the many ways which allow a demon- 
stration of the thermal properties of any heat ex- 
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FIG. 5. 
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1 vs QN”U for ratio R = I and different numbers of channels n. (a) n = 10 (five turns) ; (b) n = 20; 

(c)n=30;(d)n=40. 

changer, in this paper the manner presented in ref. [2] 
(diagrams : P,, P,,) was chosen. 

Since the biggest deviations in thermal effectiveness 
occur for a small number of channels, diagrams Pi vs 

P,, were drawn for number of turns n = 4, 6, 8, 10, 
12, 16, 20, 24, 30 and 40. As a minimal radius rmin 
values 2, 3, 4 and 5 were selected for n = 4, 6, 8 and 
10, respectively. For values n > 10 the computations 
were carried out for constant value I,,,~,, = 5. 

To see how good the counterflow SHE is in com- 
parison to the true counterflow heat exchanger 
(acronym TCHE) in Fig. 6 the line with constant 
values of correction factor F was drawn (F = 0.99, 
0.97,0.95,0.93, 0.9,0.8,0.7 and 0.6). The greater the 
areas outlined by axes PI, PII and curve with constant 
F = 0.99, 0.97, 0.95, . . . the closer is the effectiveness 
of SHE to the ideal case of TCHE. 

Another bunch of curves marked on the diagrams 
PI vs Pi, symbolizes the constant quantities of 

NTU = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.2, 1.4, 
1.6, l&2.0,2.5, 3.0, 3.54.0, 5,6,8, 10 and 15, which 
for R < 1 represent vaiues NTU, and for R > 1 values 
NT&. 

6. CONCLUSIONS 

Thermal features of SHE are evaluated with refer- 
ence to the ideal case, i.e. TCHE with the help of the 
correction factor F. The lines with constant quantities 
of F marked on the diagrams PI vs P,, represent the 
deviations of effectiveness of SHE from TCHE. Cam- 
parison should also be done regarding NTU and the 
number of channels n in SHE. 

Consider the diagrams in Fig. 6: for those quan- 
tities of NTU < 1 any kind of heat exchanger does 
not differ remarkably from TCHE and therefore there 
is no necessity to emphasize the advantages of SHE. 
However, beginning from NTU = I and passing 
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through the practical interval of NTU = 2, 3 even up 
to 4, one can see that the lines with F= 0.99, 0.97 
or 0.95 (deviations of mean temperature distribution 
between SHE and TCHE of 1, 3 or 5%) include just 
this practical area of NTU. 

It can be stated that starting from the number of 
channels n = 20 (10 turns) and more, for the most 
common interval of NTU < 3, the deviations of both 
effectivenesses are smaller than 3 %. Generally speak- 
ing the higher the number of channels in SHE the 
closer are the effectivenesses of SHE and TCHE. On 
the basis of ref. [2], where different -arrangements of 
flow are revised and diagrams P,, P,, with the lines 
for F = constant are plotted, one can testify that in 
the practical interval of NTU, SHE has higher effec- 
tivenesses than (almost) any other arrangement of 
flow, except TCHE. 

For very high quantities of NTU of 10 to 30 or 40, 
dependent on the number of turns. the effectiveness 

of SHE achieves its maximum and then with further 

growth of NTU decreases.? Particularly, if the ratio 
R = 1 then referring to number of channels n = 6, 8, 

10, 12, 14, 16, 18, 20, . . . . 30, . the effectiveness 
achieves its maximum for NTU = 7.66. 9.34, 11.36, 
13.25. 15.61, 17.50, 19.27, 21.63, . . 3j.85, ._., 

respectively. In this interval of NTU the SHE loses its 
superiority over other arrangements of flow. 

The influence of minimal radii on the effectiveness 
is small and for the number n > 20 the absolute devi- 
ation in the effectiveness does not exceed 0.2% or 
+ O.l%, if comparison was referred to the effective- 
ness calculated for r,in < 5. 

The Q-version of theoretical treatment is true no 
matter what arrangement of fluid flow in SHE is con- 
sidered: counter- or cocurrent. The system of equa- 

% This does not refer to 17 = 4 channels. 
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FIG. 6.-Continued. 

tions (6) with appropriate conditions (9)-(11) is valid 
for cocurrent flow with ratio R < 0 (put into equation 

(8)), but only relation (12) has to be rewritten appro- 
priately to this flow arrangement. 
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APPENDIX: MATHEMATICAL TREATMENT OF 
THE DlFFERENTiAL EQUATIONS 

REPRESENTING THE ENERGY BALANCE 

A common technique in the theory of linear differential 
equations is the method of Laplace’s integrals. In this 
approach one considers a set of homogeneous linear differ- 
ential equations with constant coefficients and constructs, 
directly. an integral representation of the solution. All of 
these requirements are fulfilled in equation (6) and appro- 
priate boundary conditions (9)-(12). 

Let us denote Laplace’s parameter by s and the trans- 
formed vector y by f(s) = ~[c~(to)]. Utilizing transformation 
Y equations (6) become 

](.Sl-tM)/j(.~~ = q(0) (.4]) 

where I is the unit matrix of the same order as hl. The 
equation 

!sl+ M] = 0 (AZ) 

is called the characteristic equation of M and determines 
those values s (eigenvalues) which are the basic for the con- 
struction of a general solulion. 

column i 
i 

When calculating the effecttveness a&or temperatut-e\ oi 
fluids using the method proposed here. the most time eon- 
suming calculations are those of the matrix ]sl $ ,541 tequa 
tions (7) and (AZ)) and even more the numerators ,?j,, it: 
equation (14). This is because each subscript i and/ in numcr- 
ator N runs from I lo n--- 1. which makes it necessar! to 
compute it ()I- I)” times. All these operations have tc> hil 
repeated n- I times for each ei~envalue Y.: iopcthcr this ply\ 
(n -. I)’ determinants. 

Culculation ~~~~terrninunt jsf + Ml. There is a proposal to 
select submatrices from matrix ].sI+ M] by way ofcutting out 
the square submatrix (subdeterminant) from its right hottom 
corner. This subdetcrminant, which has rank (II- 1 ii is 
denoted by D,(.F). It can easily be proved that there exists it 
connection between the three subdeterminants Dj ,(,s)~ n(s) 
and D,, ,(.s): 

D, ,(s)=(.s+l, i rsp,iJ--c;’ ,“!‘;_ ,f);, ,(.\I ( 43) 

where quantities dand C, are explained in equatton (8). Start- 
ing from two of the initial values D,,, ,(.s) = 0. D,,(.v) = I and 
running backwards with subscriptsl from ~1 to 2, one arrives 
at D,(s), which is equal to the sought determinant value of 
the matrix ].FI+ Ml. The set of data 0, for j :: I, 3.. tz -- 7. 
n --. I should be stored. This same procedure is valid for lhc 
derivative of the subdeterminant with regard to parameters. 
dD, (s) jds, which appears in equation ( 14). 

The application of the recurrent form (equation i.43)) 
allows one to save a number of multiplications and divisions 
necessary to the computation of a determinant of order n --- i 
from (n-2)(n’-n+3)/3 in a standard case (seep. 73 of ret’. 

1141) to - 2(n- 1) in the present proposal. 

C’utculu~ion qf numerators N,,. The numerator &s,tsi, with 
subscripts i and j, made from matrix /sl+:i4] according to 
the prescription explained in Section 3.4. has the following 
form : 

Since further steps tawards the solution are more of a 
mathe~ti~al exercise these considerations are abandoned 
and only the results unique for the present task will be pre- 
sented. More information about this standard solution can 
be found in the proper mathematical literature, e.g. ref. [ 141. 

For the problem under consideration it is possible to pro- 
pose some improvements in the method ofcalculation, focus- 
ing on the compact recurrent formula which allows one to 
avoid frequent laborious computation of matrices. 

A decision about a tool which can be used to compute the 
effectiveness accurately is up to the designer. However, in the 
authors’ opinion, he should have the possibility of achieving 
this goal on a personal computer. Therefore advice on the 
straightforward way of numerical operations is necessary 
and it has to be outlined here. 

(A41 

Let us store the set of data computed as a product of 
coefhcients which lie on a subdiag~nal of matrix M. For 
j=O,p,,=landj=i.2,3 ,_.., n--2. 

J-9 
/I, = n (“v’ (1,1., /. , ) (A.s) 

/= I 

where ciJ(rflrC + ,) are components of the matrix equation (7). 
The value of numerator N,,(.s,) can be calculated as fol- 

lows : consider i <j and replace the symbols D,_ , . D,. D,, i 
in equation (A3) by B,_ (, f3], E,, ,, respectively. In this case 
the form of eqU&On (A3) IS still valid under the condition 
that the recurrent operation starts from subscript i running 
backwards to 2 and that now the other initial values of B,. 
B li, should be used. Omitted from the analysis here are 
the two initial values calculated as follows: 4, I = 0 and 
& = D,, ,p,__ ,/p,_ ,, where O,+ i was determinated and stored 
before. The value of - (- lYB,(s,) computed according to 
the described procedure is equal to the sought n~erator 
N,,(.s;). Using the advantage of the symmetry of matrix M it 
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can be stated that Nij(s,) = N,,(s,). For subscripts j = i this almost twice because of its symmetry (exact proportion is 
procedure is in force as well. [l + l/(n- 1)]/2) and second because of the different position 

It should be mentioned that by computation of all values of the subscripts i and j in the triangular matrix the initial 
A’,, in accordance to described procedure the number of value B, starts from i i n- 1, which allows for a decrease in 
operations is additionally reduced for two reasons. First. these operations by approximately one third as well. 

DISTRIBUTION DE LA DENSITE DE FLUX THERMIQUE DANS LES 
ECHANGEURS SPIRALES 

R&sum&On dtveloppe une methode analytique pour le calcul precis des changements de temperature 
dans les tchangeurs thermiques spiral& a contre-courant. La spirale est composee de profils en arc de cercle 
avec centres de courbure aux sommets d’un triangle equilateral. On suppose constants les coefficients de 
transfert et les capacites thermiques. Contrairement a la procedure conventionnelle, on s’interesse a la 
distribution de densitt de flux thermique, ce qui offre des avantages considerablespar rapport a l’analyse 
directe des temperatures du fluide. On etudie l’influence des differents parametres geometriques et des 

graphes sont present& pour le dessin et l’evaluation des echangeurs thermiques spiral&s. 

VERTEILUNG DER WARMESTROMDICHTE IN SPIRAL-WARMEUBERTRAGERN 

Zusannnenfassung-Es wird eine analytische Methode entwickelt zur genauen Berechnung der Tem- 
peraturlnderung in Gegenstromspiralwlrmeiibertragern. Die Spirale ist aus Kreisbijgen zusammengesetzt 
mit den Kriimmungsmittelpunkten auf den Eckpunkten eines gleichseitigen Dreiecks. Es werden konstante 
Warmedurchgangskoeffizienten und Wlrmekapazitaten vorausgesetzt. Im Gegensatz zur iiblichen Behand- 
lungsweise wird die Verteilung der WlrmefluBdichte betrachtet, was beachtliche Vorteile gegeniiber einer 
direkten Untersuchung der Fluidtemperaturen bringt. Der EinfluB verschiedener geometrischer Daten wird 
untersucht, und es werden Diagramme fiir den Entwurf und das Nachrechnen von Spiralwlrmeiibertragern 

vorgelegt. 

PACI-IPEAEJIEHHE I-IJIOTHOCTM TEI-IJIOBOI-0 HOTOKA B CIIHPAJIbHbIX 
TEI-IJIOOBMEHHMKAX 

hEOTaIpISI-Pa3pa6OTaH a&UIEiTEiYeCKIifi MeTOA TOYHOrO paC'IeTa ti3MeHeHHR TeMnepaTypbl B npOTki- 

BOTO'UibIXCII&SpaJIbIibIXTenJIOO6MeHHHKaX.3MeeBLiK UMeeT KOJIbUeBOiinpO&iJIbCUeHTpaMHKpHBH3HbI 

Ha yrJIaX paBHOCTOpOHHeI-0 Tpe+TOJIbHHKa.~~AnOAaraeTCK n03TORHCTBO CyMMapHOrO K03I#I&iUWeHTa 

TennonepeHoca B TennoehfKmii. B npoT~Bonononmocrb o6IUenpaHnToii MeTomKe paccMaTpmaeTcn 

pacnpeAeneHae nnoTHocr~Tennonor0 noToKa,woAaeT 3HawTenbHbrenpeuMylrrecreanocpaBHeHm-o~ 

nprhibrM aHami30hi TehmepaTyp XHAKOCTB. kiccnenyeTcn mmmie pa3nawmx reoMelpurecKsix napa- 

MeTpOB,HnpeACTaBAeHbIrpa@iKEiAAKnpOeKTHpOL3aHHKH 0UeHKHCnUpaJIbHbIXTenAOO6MeHHAKOB. 


